Steady-State Spectroscopy and Ultrafast Dynamics of Flavylium Derivatives in the Red and Near-Infrared Spectral Region

Ahmed H. Ismail,1 M. Faisal Khyasudeen,1,2 John Husband,1 Younis Baqi,1 Osama K. Abou-Zied1

1 Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Muscat, Sultanate of Oman
2 Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
E-mail: mfaisal_90@um.edu.my

Abstract

In an effort to enhance the absorption and fluorescence of flavylium in the red and near-infrared (NIR) spectral region, we synthesized a 2'-hydroxyflavylium derivative (FLV-OH) with a rigid electron donating julolidine group attached to position 7 and examined its ground and excited states spectroscopy by absorption, fluorescence, ultrafast dynamics, and by density functional theory (DFT). The precursor compound without the hydroxyl group (FLV) was also synthesized and characterized in order to clarify the role of the intramolecular hydrogen bond on the spectroscopy of FLV-OH. The S₁ ← S₀ absorption peaks at 540 nm and extends to 620 nm, whereas the corresponding fluorescence has two peaks and extends to 900 nm. The ability of the flavylium moiety to undergo ring opening to form chalcone is observed in basic solution. The presence of the hydroxyl group in FLV-OH promotes the formation of a quinonoidal base which was not possible in FLV. Femtosecond fluorescence upconversion and transient absorption measurements reveal the solvation dynamics within the initial 1-2 ps after photexcitation, followed by molecular relaxation to the ground state. The latter was measured to be 505 ps in FLV-OH and 164 ps in FLV. The longer lifetime of FLV-OH in the excited state is correlated to the presence of a hydrogen bond (OH---O) that tends to stabilize the excited molecule. The current results indicate that FLV-OH has spectroscopic properties that make it suitable for many applications such as a potential light harvesting dye in solar cell

Keywords: Flavylium; Red, Near-infrared, Absorption; Fluorescence; Ultrafast dynamics

Fig. 1: Transient absorption profiles of FLV-OH and FLV dissolved in MeOH

Reference: