Domain Structures and Photoinduced Dynamics of Electronic Ferroelectrics Investigated by Terahertz-Emission Microscopy

Hirotake Itoh¹, Kaoru Yamamoto², Martin Dressel³, and Shinichiro Iwai¹

¹Department of Physics, Tohoku University, Sendai, Japan
²Department of Applied Physics, Okayama University of Science, Okayama, Japan
³I. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany

E-mail: hiroitoh@tohoku.ac.jp

Abstract

Electronic ferroelectricity, which is peculiarly driven by charge ordering (CO) or strong Coulomb repulsion among charges,[1] has become an important topic in contemporary condensed matter physics, toward gigantic optical responses such as ultrafast photoinduced insulator-to-metal transition or large optical nonlinearity.[2,3] We report herein recent results of terahertz(THz)-wave-emission microscopy to reveal domain structures of prototypical electronic ferroelectrics: strongly-correlated quasi-one-dimensional organic conductors (TMTTF)₂X (TMTTF: tetramethyl-tetrathiafulvalene, X = SbF₆, AsF₆, PF₆, ReO₄, BF₄).[4,5]

Upon irradiating femtosecond pulses to the crystals, the THz emission occurs via 2nd-order optical nonlinearity activated by ferroelectricity or concomitant non-centrosymmetricity. Therein, as shown in Fig. (a), the resultant THz waveform inverts upon inversion of ferroelectric polarization hence antiparallel ferroelectric domains are distinguishable [6].

The observed characteristic domain structures with size of ~100 μm (resolution: 5 μm), and their changes upon photoexcitation [Fig. (b)] or temperature cycles [Fig. (c)] will be discussed.

Keywords: strongly correlated electrons, charge order, electronic ferroelectricity, ferroelectric domains, terahertz, photoinduced phase transition, ultrafast spectroscopy

References: